Россия, Москва Tel. \ fax: (495) 333-93-01 www.nolatech.ru <u>nolatech@mail.ru</u>

DLC-R-1200-OEM

Драйвер лазерного диода со стабилизатором температуры в корпусе Butterfly

Инструкция

Перед использованием прибора полностью ознакомьтесь с инструкцией.

1. Особенности стабилизатора тока лазерного диода

- Непрерывный / импульсный режим работы
- Аналоговый стабилизатор тока
- 12 битный ЦАП установки тока с энергонезависимой памятью
- Ограничение тока в калибровочной таблице
- 18 битный АЦП измерения фототока
- Разъём модуляции

2. Особенности стабилизатора температуры лазерного диода

• Аналоговый ПИД-регулятор с подобранными коэффициентами, не требующий настройки

- Аналоговый усилитель тока с автоматически переключаемой полярностью
- 12 битный ЦАП установки температуры с энергонезависимой памятью
- 16 битный АЦП измерения температуры
- Ограничение тока на ТЕС
- Работа с датчиком NTC 10кОм.

3.Сферы применения

• Удобная интеграция оптического модуля в аппаратуру

4. Описание

Устройство состоит из стабилизатора тока лазерного диода и стабилизатора температуры лазерного диода. Стабилизатор тока лазерного диода является аналоговым «источником тока» с низким уровнем шумов и высокой стабильностью. Стабилизатор температуры лазерного диода: ПИД-регулятор с аналоговым усилителем тока для ТЕС, автоматически переключаемой полярностью, обеспечивающий оптимальный выход на заданную температуру, не требующий настройки. Посадочное место под лазерный диод расположено на плате. Конструктивно устройство имеет размеры 75мм × 56мм с алюминиевым радиатором для отвода тепла.

Регулировка и измерение параметров осуществляется через интерфейсный разъём по протоколу I2C. Также на плате установлен разъём модуляции – вход включения тока лазерного диода, подтянутый резистором к питанию. Удобно изменять и измерять параметры программой LCtrl.exe с компьютера через контролер-адаптер CA-16 подключаемый к разъёму управления устройством по интерфейсу I2C и компьютеру по интерфейсу USB.

Если устройство поставляется с установленным оптическим модулем, то настроенным по его спецификации. Если без оптического модуля, то ток установлен на 100 мА, а ограничение тока установлено на максимальное значение; температура установлена на середину диапазона, примерно 10 кОм.

5. Предельно допустимые параметры

Параметр	Мин.	Тип.	Макс.	Ед. Изм.
Напряжение питания	4,8	5	5,2	В
Напряжение на входе INTERLOCK	0		Напряжение питания	В
Потребляемый ток			2,7	А
Температура радиатора ЛД в рабочем режиме	Согласно спецификации оптического модуля			
Температура хранения	- 40		+ 85	C°

6. Требования к питанию

Для питания стабилизатора требуется источник постоянного напряжения 5В. Ток источника должен превышать максимальный потребляемый ток. Рекомендуем EPS-15-5 (Mean Well)

7. Электрические параметры стабилизатора тока ЛД

Параметр	Мин.	Тип.	Макс.	Ед. Изм.
Выходное напряжение	0		3	В
Выходной ток	0		1200	мА
Длительность фронта / спада по уровню 0,1 - 0,9	5	10	20	МКС
Разрядность ЦАП установки тока		12		бит
Разрядность АЦП измерения фототока		17		бит
Диапазон измерения фототока	0		10	мА

8. Электрические параметры стабилизатора температуры ЛД

Параметр	Мин.	Тип.	Макс.	Ед. Изм.
Выходное напряжение			± 2,7	В
Выходной ток			± 1,4	А
Разрядность ЦАП установки температуры		12		бит
Разрядность АЦП измерения терморезистора		15		бит
Диапазон перестройки температуры	3		30	кОм

9. Описание органов управления

- Контакты питания
- Разъём управления
- Разъём модуляции

Pin	Функция	
1	Элемент Пельтье (+)	
2	Терморезистор	
3	ФД анод (-)	
4	ФД катод (+)	
5	Терморезистор	
10	ЛД анод (+)	
11	ЛД катод (-)	
13	Корпус	
14	Элемент Пельтье (-)	

10. Схема включения стандартных модулей Butterfly

11. Первый запуск

Распакуйте устройство, осмотрите на предмет отсутствия повреждений. Оптический модуль установлен на плату (при заказе вместе с оптическим модулем). Температура по умолчанию настроена на 10 кОм (25°C). Ток установлен на указанную в спецификации оптическую мощность.

- 1. Снимите защитный колпачок с оптического разъёма (при наличии).
- 2. Подключите устройство к питанию 5 В соблюдая полярность.
- 3. Снимите перемычку с разъёма модуляции.

Появилось излучение.

12. Регулировка параметров

Пользователь может изменять заранее настроенные параметры. Для этого на плате установлен интерфейсный разъём. Управление осуществляется по протоколу I2C следующими устройствами:

- 1. ЦАП МСР4725 установка тока, А0 подключен к «0».
- 2. ЦАП МСР4725 установка температуры, А0 подключен к «1».
- 3. АЦП ADS1100 измерение сопротивления терморезистора.
- 4. АЦП МСР3421 измерение фототока.
- 5. Микросхема АТ24С16С хранения калибровочной таблицы.

12.1 Содержимое калибровочной таблицы.

Каждое значение занимает 2 байта и размещено по двум адресам, младший байт значения располагается по младшему адресу, а старший байт по старшему адресу. За исключением нулевого адреса. Адреса представлены в десятичном формате.

Адреса 1, 2 - Значение кода ЦАП соответствующее току ЗмА Адреса 3, 4 - Значение кода ЦАП соответствующее току 10мА Адреса 5, 6 - Значение кода ЦАП соответствующее току 30мА Адреса 7, 8 - Значение кода ЦАП соответствующее току 100мА Адреса 9, 10 - Значение кода ЦАП соответствующее току 300мА Адреса 11, 12 - Значение кода ЦАП соответствующее току 1000мА Адреса 13, 14 - Значение кода ЦАП соответствующее току 1200мА Адреса 15, 16 - Значение кода ЦАП ограничения тока Адреса 17, 18 - Значение резистора, последовательно включённого с терморезистором Адреса 19, 20 - Значение кода АЦП при отсутствии терморезистора Адреса 21, 22 - Значение кода АЦП при замыкании терморезистора Адреса 23, 24 - Значение кода ЦАП ограничения верхнего значения температуры Адреса 25, 26 - Значение кода ЦАП ограничения нижнего значения температуры Адреса 27, 28 - Значение кода АЦП при отсутствии фотодиода Адреса 29, 30 - Значение кода АЦП, соответствующее фототоку 0,003мА Адреса 31, 32 - Значение кода АЦП, соответствующее фототоку 0,01мА Адреса 33, 34 - Значение кода АЦП, соответствующее фототоку 0,03мА Адреса 35, 36 - Значение кода АЦП, соответствующее фототоку 0,1мА Адреса 37, 38 - Значение кода АЦП, соответствующее фототоку 0,3мА Адреса 39, 40 - Значение кода АЦП, соответствующее фототоку 1мА Адреса 41, 42 - Значение кода АЦП, соответствующее фототоку ЗмА Адреса 43, 44 - Значение кода АЦП, соответствующее фототоку 10мА

Удобно изменять и измерять параметры программой LCtrl.exe с компьютера через контролер-адаптер CA-16, подключаемый к разъёму управления устройством по интерфейсу I2C и компьютеру по интерфейсу USB. Достаточно приобрести один контролер-адаптер CA-16 на всю партию приборов, он универсален.

13. Охлаждение

Алюминиевый радиатор предназначен для отвода тепла от корпуса лазерного диода. При необходимости установите вентилятор **BC-70** для активного охлаждения.

Для питания драйвера с **BC-70** рекомендуем использовать PD-45A (Mean Well).

14.Меры безопасности

При установке тока оптического модуля не превышайте значение указанное в спецификации.

14.1 Общие требования.

Все работы должны проводиться квалифицированными сотрудниками. Не заменяйте комплектующие и не выполняйте самостоятельную модификацию платы драйвера. Допускается замена только оптического модуля и установка активного охлаждения, в случае необходимости обратитесь к производителю прибора.

14.2 Лазерная опасность.

Полупроводниковые лазеры излучают инфракрасное излучение, которое невидимо человеческим глазом, но опасное для глаз при прямом или отраженном попадании.

Индивидуальные средства защиты глаз должны обеспечивать защиту от лазерного излучения в диапазоне длин волн используемых в устройстве.

14.3 Полярность.

Необходимо соблюдать правильную полярность источника питания при подключении.

Все электрические соединения должны быть надежными.

14.4 Статика.

Избегайте разрядов статического электричества, они повредят оптический модуль.

Устанавливайте и припаивайте оптический модуль в заземляющем браслете с проволочной перемычкой на контактах ЛД+ и ЛД- и перемычкой на плате устройства -5V+.

После монтажа и до включения перемычки необходимо удалить.

14.5 Напряжение.

Используйте рекомендованный источник питания. При выборе другого источника питания, перед использованием проверьте на отсутствие «выбросов» выходного напряжения при включении и выключении. Выше указан разрешенный диапазон напряжений питания. Превышение верхней границы напряжения питания повредит устройство, приниженное напряжение ухудшит его работу.

14.6 Перегрев радиатора.

Лазерный диод должен быть надежно закреплен на радиаторе. Температура радиатора в рабочем режиме не должна превышать +35 C°, если иное не указано в спецификации оптического модуля, при необходимости установите вентилятор **BC-70** для активного охлаждения.

14.7 Замыкания.

Избегайте попадания жидкостей, металлической стружки и других предметов на плату, вызывающих замыкания элементов устройства между собой или на корпус. Замыкание повредит или нарушит работу устройства.

14.8 Порядок включения выключения

Включение - подайте питание затем разомкните разъем модуляции. Выключение - замкните разъем модуляции затем отключите питание.

14.9 Прядок подключения и отключения контроллера адаптера к устройству. Включение - подключите CA-16 к устройству, затем ПК, затем включите питание устройства.

Выключение - отключите питание устройства, затем отсоедините СА-16 от ПК, затем отсоедините СА-16 от устройства.

Соблюдайте требования техники безопасности на всех этапах работы с прибором. Несоблюдение этих инструкций может привести к повреждению или нарушению работы устройства. Производитель не несет ответственности за поломки из-за несоблюдения этих требований.

15. Самостоятельная установка лазерного модуля

Подготовка к установке

При приобретении устройства без ЛД перед его установкой необходимо проверить «сохраненный» в памяти ток лазерного диода. Это можно сделать двумя способами.

Способ 1:

- 1. Подключите контролер-адаптер СА-16 к устройству.
- 2. Подключите контролер-адаптер СА-16 к ПК.
- 3. Включите питание устройства.
- 4. Запустите на ПК программу Lctrl.exe.
- 5. Выберите пункт меню «установка тока».
- 6. Установите нужный ток.
- 7. Сохраните значение, нажав кнопку «SAVE».

Способ 2:

- 1. Подключите амперметр вместо ЛД оптического модуля.
- 2. Включите питание устройства.
- 3. Снимите перемычку с разъёма модуляции.
- Появился ток, его значение должно быть меньше или равно значению указанному в спецификации на оптический модуль.

Установка

1. Отключите устройство от питания и от контролера-адаптера СА-16.

- 2. Замкните выводы питания между собой до полной разрядки конденсаторов.
- 3. Припаяйте проволочную перемычку на плату, контакты ЛД+ и ЛД-.
- 4. Укоротите выводы оптического модуля до нужной длины.
- 5. Подогните выводы оптического модуля немножко вниз для лучшего припаивания.

6. Закрепите оптический модуль на радиаторе винтами.

7. Припаяйте выводы оптический модуля к соответствующим контактам на плате.

При пайке используйте неактивный флюс, после пайки остатки флюса удалите. Не допускайте затекание растворенного флюса на элементы платы.

8. Снимите перемычку замыкающую контакты платы ЛД+ и ЛД-.

16. Габаритный чертеж

17. Дополняющие компоненты

- 1. Адаптер связи USB-UART и контроллер управления подключаемый к компьютеру CA-16.
- 2. Контролер управления с ЖКИ и клавиатурой СР-4.
- 3. Вентилятор охлаждения со стойками и винтиками ВС-70.
- 4. Провода с разъемами к рекомендованному блоку питания PD-45A.

Дополняющие компоненты приобретаются отдельно.

18. СА-16 контроллер и адаптер для связи и управления драйвером лазерного диода

18.1 Особенности адаптера контроллера СА-16.

Предназначен для управления драйвером оптического модуля DLC-R-1200-OEM. Позволяет изменять и измерять параметры программой LCtrl.exe с компьютера. Подключается к разъему управления устройством по интерфейсу I2C и компьютеру через адаптер связи USB-UART по интерфейсу USB.

18.2 Меры безопасности.

18.2.1 Общие требования.

Все работы должны проводиться квалифицированными сотрудниками. Не заменяйте комплектующие и не выполняйте самостоятельную модификацию платы контроллера.

18.2.2 СА-16 не имеет гальванической развязки, не подключайте контроллер адаптер к ПК, на корпусе которого имеется какое либо напряжение.

18.2.3 Порядок подключения и отключения контроллера адаптера к устройству. Включение: подключите CA-16 к устройству, затем к ПК, затем включите питание устройства.

Выключение: отключите питание устройства, затем отсоедините СА-16 от ПК, затем отсоедините СА-16 от устройства.

18.2.4 Избегайте попадания жидкостей, металлической стружки и других предметов на плату, вызывающих замыкания элементов устройства между собой или на корпус. Замыкание повредит или нарушит работу контроллера.

Соблюдайте требования техники безопасности на всех этапах работы с контроллером. Несоблюдение этих инструкций может привести к повреждению или нарушению работы контроллера. Производитель не несет ответственности за поломки из-за несоблюдения этих требований.

18.3 Возможные варианты исполнения контроллера и адаптера. Адаптер связи может быть выполнен на базе FT232, PL2303 или CP2102.

19. Lctrl.exe виртуальная панель управления лазером

19.1 Особенности программы.

Программа не требует установки. Проверялась работоспособность на ОС Windows XP, 7, 8, 8.1, 10.

19.2 Описание.

Программа представляет собой виртуальную панель управления лазером. Программа передает контроллеру CA-16 данные о «нажатии» на виртуальные кнопки и отображает сообщения от контроллера CA-16 на двухстрочном виртуальном дисплее и единичном индикаторе «виртуальная лампочка».

19.3 Технические требования.

OC Windows XP, 7, 8, 8.1, 10; USB-UART адаптер; доступ в интернет для установки драйвера USB-UART адаптера.

19.4 Отказ от ответственности.

Программа предоставляется «как есть» и может содержать ошибки. АО "HOЛATEX" ни при каких обстоятельствах не несет ответственности за потерю, повреждение, издержки и затраты, понесенные Пользователем или третьим лицом в результате использования Программы, включая без ограничений обязательства за торговые расходы, простой оборудования, потери, понесенные Пользователем или третьим лицом в результате отсутствия, неисправности, ошибки или нарушения работы Программы.

19.5 Подготовка.

1.Подключите USB-UART адаптер к ПК.

2.Возможно понадобится установить драйвер USB-UART адаптера. Обычно он устанавливается автоматически.

3.Выясните к какому порту подключен USB-UART адаптер при помощи диспетчера устройств.

🗄 Диспетчер устройств —	o x
Файл Действие Вид Справка	
✓ 🗄 Intel-m3	^
> 🚯 Bluetooth	
» 👖 Аудиовходы и аудиовыходы	
> 🤜 Видеоадаптеры	
» 🎬 Встроенное ПО	
> 🔜 Дисковые устройства	
> 🖏 Звуковые, игровые и видеоустройства	
> 🥅 Клавиатуры	
> 💻 Компьютер	
> 🏺 Контроллеры USB	
> 🏂 Контроллеры запоминающих устройств	
> 🛄 Мониторы	
> 側 Мыши и иные указывающие устройства	
> 🚍 Очереди печати	
> 📃 Переносные устройства	
✓	
💭 Prolific USB-to-Serial Comm Port (COM4)	
> 🚍 Принтеры	
> 📱 Программные устройства	
> 🔲 Процессоры	
> 🚽 Сетевые адаптеры	
> 🏣 Системные устройства	
» 🛺 Устройства HID (Human Interface Devices)	
> 📲 Устройства безопасности	
> 🚠 Устройства обработки изображений	
🔪 🔜 Хост-адартеры зароминающих устройств	~

- 19.6 Первый запуск.
- 1. Подключите контроллер СА-16 к DLC-R-1200-OEM.
- 2. Подключите контроллер СА-16 через USB-UART адаптер к ПК.
- 3. Включите питание DLC-R-1200-OEM.
- 4.Запустите программу Lctrl.exe.
- 5.Установите нужный Com port и Baud rate 115200.

Settings			
Port			
COM1	\sim		
Baud rate			
115200	\sim		
Connect	Exit		

Во время установки связи программы с контроллером СА-16 будут продемонстрированы сообщения о компании и аппаратной и программной версии.

19.7 Работа с программой.

19.7.2 Установка тока.

Сообщение «SET» означает, что в ЦАП DLC-R-1200-OEM записано значение соответствующее отображаемому току. Виртуальные кнопки Start и STOP управляют двухконтактным разъемом, которой можно подключить к DLC-R-1200-OEM и управлять включением / выключением тока. Если оптический модуль не установлен или на входе модуляции DLC-R-1200-OEM состояние логического нуля, то установленный ток отображаться программой будет, а течь не будет. Дискретность изменения тока виртуальными кнопками «-» и «+» составляет примерно 0,3 мА. Контроллер округляет отображаемое значение до 1мА, не каждое нажатие на виртуальные кнопки «-» и «+» вызовет изменения отображаемого значения, но вызовет небольшое изменение тока.

19.7.3 Измерение и установка температуры.

Сообщение «REAL» означает, что отображается измеренное значение терморезистора.

Виртуальными кнопками «-» и «+» изменяется значение записываемое в ЦАП DLC-R-1200-OEM, но оно не отображается. После изменения установленной температуры, дождитесь реакции системы. После включения / выключения тока ЛД, системе требуется некоторое время для компенсации изменений и «возврата» на заданную температуру.

19.7.4 Измерение тока встроенного в оптический модуль фотоприемника.

Отображается усредненное из 10 измерений значение. При импульсном режиме работы отображаемое значение будет меньше, чем при непрерывном, пропорционально скважности.

19.7.5 Сохранение настроенных параметров.

При включении питания DLC-R-1200-OEM значение тока и температуры автоматически устанавливается из энергонезависимой памяти. Для изменения «стартового» значения, после настройки параметра, для сохранения результата нажмите кнопку Save. И при следующем включении питания DLC-R-1200-OEM вне зависимости от того подключен контроллер CA-16 к DLC-R-1200-OEM или нет, сохраненные значение тока и температуры автоматически установятся. 19.8 Меры безопасности.

Все работы должны проводиться квалифицированными сотрудниками.

Чтобы защитить ПК и данные на нем, после скачивания проверьте программу антивирусным сканнером.

Соблюдайте порядок включения и выключения.

Включение: подключите CA-16 к DLC-R-1200-OEM, затем CA-16 к ПК, далее включите питание DLC-R-1200-OEM.

Выключение: отключите питание DLC-R-1200-OEM, затем отсоедините CA-16 от ПК, затем отсоедините CA-16 от DLC-R-1200-OEM.

19.9 Сообщения об ошибках.

19.9.1 Нет связи ПК с контроллером CA-16 или адаптером USB. Для устранения ошибки:

- 1. Закройте программу Lctrl.exe.
- 2. Запустите программу Lctrl.exe.
- 3. Проверьте нужный Com port и Baud rate 115200.

19.9.2 Нет связи контроллера CA-16 с драйвером DLC-R-1200. Для устранения ошибки:

- 1. Закройте программу Lctrl.exe.
- 2. Отключите питание DLC-R-1200-OEM.
- 3. Проверьте все разъемные соединения.
- 4. Включите питание DLC-R-1200-OEM.
- 5. Запустите программу Lctrl.exe.

Если у Вас возникли вопросы, пожалуйста, свяжитесь с нами!